PHD2 regulates arteriogenic macrophages through TIE2 signalling

نویسندگان

  • Alexander Hamm
  • Lorenzo Veschini
  • Yukiji Takeda
  • Sandra Costa
  • Estelle Delamarre
  • Mario Leonardo Squadrito
  • Anne-Theres Henze
  • Mathias Wenes
  • Jens Serneels
  • Ferdinando Pucci
  • Carmen Roncal
  • Andrey Anisimov
  • Kari Alitalo
  • Michele De Palma
  • Massimiliano Mazzone
چکیده

Occlusion of the main arterial route redirects blood flow to the collateral circulation. We previously reported that macrophages genetically modified to express low levels of prolyl hydroxylase domain protein 2 (PHD2) display an arteriogenic phenotype, which promotes the formation of collateral vessels and protects the skeletal muscle from ischaemic necrosis. However, the molecular mechanisms underlying this process are unknown. Here, we demonstrate that femoral artery occlusion induces a switch in macrophage phenotype through angiopoietin-1 (ANG1)-mediated Phd2 repression. ANG blockade by a soluble trap prevented the downregulation of Phd2 expression in macrophages and their phenotypic switch, thus inhibiting collateral growth. ANG1-dependent Phd2 repression initiated a feed-forward loop mediated by the induction of the ANG receptor TIE2 in macrophages. Gene silencing and cell depletion strategies demonstrate that TIE2 induction in macrophages is required to promote their proarteriogenic functions, enabling collateral vessel formation following arterial obstruction. These results indicate an indispensable role for TIE2 in sustaining in situ programming of macrophages to a proarteriogenic, M2-like phenotype, suggesting possible new venues for the treatment of ischaemic disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible Factor-2α.

BACKGROUND Vascular occlusion and complex plexiform lesions are hallmarks of the pathology of severe pulmonary arterial hypertension (PAH) in patients. However, the mechanisms of obliterative vascular remodeling remain elusive; hence, current therapies have not targeted the fundamental disease-modifying mechanisms and result in only modest improvement in morbidity and mortality. METHODS AND R...

متن کامل

Molecular control of angiopoietin signalling.

The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This r...

متن کامل

The Molecular Balance between Receptor Tyrosine Kinases Tie1 and Tie2 Is Dynamically Controlled by VEGF and TNFα and Regulates Angiopoietin Signalling

Angiopoietin-1 (Ang1) signals via the receptor tyrosine kinase Tie2 which exists in complex with the related protein Tie1 at the endothelial cell surface. Tie1 undergoes regulated ectodomain cleavage in response to phorbol esters, vascular endothelial growth factor (VEGF) and tumour necrosis factor-α (TNFα). Recently phorbol esters and VEGF were found also to stimulate ectodomain cleavage of Ti...

متن کامل

Pericyte-expressed Tie2 controls angiogenesis and vessel maturation

The Tie receptors with their Angiopoietin ligands act as regulators of angiogenesis and vessel maturation. Tie2 exerts its functions through its supposed endothelial-specific expression. Yet, Tie2 is also expressed at lower levels by pericytes and it has not been unravelled through which mechanisms pericyte Angiopoietin/Tie signalling affects angiogenesis. Here we show that human and murine per...

متن کامل

Loss of PHD3 in myeloid cells dampens the inflammatory response and fibrosis after hind-limb ischemia

Macrophages are essential for the inflammatory response after an ischemic insult and thereby influence tissue recovery. For the oxygen sensing prolyl-4-hydroxylase domain enzyme (PHD) 2 a clear impact on the macrophage-mediated arteriogenic response after hind-limb ischemia has been demonstrated previously, which involves fine tuning a M2-like macrophage population. To analyze the role of PHD3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013